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Introduction

The Kodaira-Spencer-Kuranishi theory [3], [6], [7], [10], [11], [12], [13],
[14] of deformations concerns itself mainly with the variation of the complex
analytic structure on a compact complex analytic manifold M. Denoting the
sheaf of germs of holomorphic vector fields by 6, the group of infinitesimal
deformations is shown to be H'(M, §). It is therefore quite natural to expcet
that H(M, §) would control the local deformations of M. In fact Frolicher-
Nijenhuis [2] discovered in 1957 that if (M, 6) = 0, any family of deforma-
tions is locally trivial at the reference point. There is a natural quadratic map
H'(M, §) — H¥(M, 6) which assigns to every infinitesimal deformation, the
obstruction to prolonging it one step. If such a prolongation is possible, then
one meets another obstruction which also lies in H*(M, §). Subsequent obstruc-
tions also lie in H%(M, 6). If one can pass all these obstructions, one can con-
struct formally a family of deformations of M. But then, one meets the signifi-
cant analytic question of convergence; the formal deformations constructed
apriori need not converge and therefore need not define a genuine deforma-
tion of M. In the special case when H*(M, §) = 0, there is no serious difficulty
in constructing formally a family of deformations. Kodaira-Nirenberg-Spencer
[5] proved that in this case, the formally constructed family actually converges
to a genuine family of deformations of M. Moreover, Kodaira-Spencer [8]
proved that this family is universal and effective.

In [9] Kuranishi introduced the notion of a normal family of deformations
of a compact complex manifold and proved the existence of a holomorphic
normal family of deformations for any given compact complex manifold. This
family, constructed by Kuranishi, is more general than the one constructed by
Kodaira-Nirenberg-Spencer and reduces to their family when A*(M, §) = 0.

In [10], [12] Kuranishi proved the fundamental existence theorem of defor-
mation theory, namely, the existence of a universal and effective family of
deformations for any compact complex manifold.

Communicated by D. C. Spencer November 29, 1971. The author wishes to express
his thanks to Professor M. Kuranishi for his valuable guidance in the preparation of this
paper. .
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In order to define and prove the existence of a normal family of deforma-
tions, Kuranishi defined a decreasing filtration of the first cohomology group.
H'(A4) of the complex 4 = 3., A?, with respect to the exterior differential
operator ¢. Here A7 denotes the space of differential forms on M of type (0, p)
with values in the complex vector bundle of tangent vectors of type (1,0). We
call this filtration the normal filtration of H(4).

In order to construct a universal family, Kuranishi constructed an analytic
injective map @: W — A4', W being an open neighborhood of the origin in
H'(M, §). This mapping plays the crucial role in the construction of universal
family. We call this mapping @ the canonical universal map.

The main theorem of this paper gives a characterization of the normal filtra-
tion of H'(M, §) in terms of the canonical universal map @.

- This paper consists of two parts. In Part I, there are three sections ; the first
section contains known facts on complex manifolds, which are needed for our
purpose ; the second section gives the definition of the normal filtration and the
third section describes how and in what context the mapping & was construct-
ed by Kuranishi. The second part consists of four sections. The first section
gives the statement of our main theorem; the second gives the statements of
a lemma and a proposition on which the proof of the main theorem mainly
rests, the third section gives the proof of the main theorem and the final sec-
tion gives the proofs of the lemma and the proposition of § 2.

PART I. NORMAL FILTRATION OF H'(M, 6

1. Some facts on compact complex manifolds

In this section we briefly mention some well known facts which we need, on
compact complex manifolds. Let M be a compact complex manifold, and let
M denote the underlying C= differential manifold. Let 77M and T”’M be the
complex vector bundles of type (1,0) and (0, 1), respectively, of M. Then
TMQ,C = T'M @ T”"M where TM ®p C is the complex tangent bundle of
M. T'M is the complex conjugate of T”/M. Let A? denote the space of C*
differential forms of M of type (0, p) with values in 7M. If 6 ¢ 47, in terms
of complex analytic local coordinates Z = (Z!, - - ., Z") of M, we have

0= 3 Ou.oa@Z N\ -o- NdZo,
QLy=c,ap
where 4., ..., are vector fields of type (1,0) and are skewsymmetric in
o, - -+, ap. We have the exterior derivative 0: A? — 42*! defined by
a6

30 = 3 o gZi NdZaN oo N\ dZer .
727

Q)
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Also we have the bracket operator [ 1: A7 X A¢ — A4?*2. If fe 47,
G = Tloisg Boyiornns @27 N -+ - N\ dZP e A%, then locally

0.8 = = [0uyrapr $sropJAZN oo o NdZo2 NAZB N oo N dZPe .

&y, ,ap
B1,0-+58q

Since the change of charts are complex analytic, it can be checked easily that
this definition of [ ] is independent of the chart Z. Then 4 = },,, 4% is a
graded Lie algebra complex with respect to 6 and [ ]. This means that ¢ is
linear, 6-0 = 0, [ ] is bilinear, and the following three formulas hold for
fe AP, ge A% e AT

(1.1 : (6,41 = (= D)+ g, 6],
1.2) ol8, g1 = o6, ¢} + (=1)le, o8
(1.3) (=D6, [$,¥]] + (—=1)?7[g, [, 6]] + (=1)*[y, 6,411 =0 .

Let H2:?(A4) be the p-dimensional cohomology group of the complex 4 with
respect to the differential operator 3, and HP(M,6) be the p-dimensional
cohomology group of M with coefficients in the sheaf 8 of germs of holomorphic
vector fields of M. Then we have the Dolbeault isomorphism

1.4) H}YA) = H*M, 6) .

We are mainly interested in A' as it plays a very important role in deforma-
tion theory of compact complex manifolds. This is due to the following Prop-
osition 1.1. An almost complex structure on M is, by definition, a C* vector
subbundle over C, say T”, of TM @ C such that we have a direct sum decom-
position

1.5) TMRaC=T"'®T",

where T denotes the conjugate of T”. Every complex structure M on M in-
duces on M an almost complex structure in a canonical way since TM @, C =
T"M @ T'M and T'M is the conjugate of T”"M. Let p’(M) (resp. p”/(M)) denote
the projection of TM @z C onto T'M (resp. T”’M) with kernel T'M (resp.
T'M).

Definition (1.1). An almost complex structure T” on M is said to be of
finite distance from the complex structure M on M if and only if p”(M) induces
an isomorphism of 7/ onto T"M.

Then we have the important proposition.

Proposition (1.1) [4], [13]. There is a bijective correspondence between
almost complex structures on M having finite distance to the complex structure



228 D. SUNDARARAMAN

M on M and the elements of A(M) sufficiently closed to zero in the C’ topol-
ogy. :

We give now a brief explanation of the bijective correspondence. Let T be
an almost complex structure on M having finite distance to M, and 8 be the
inverse of the isomorphism g”(M): T — T"M. -

Let o = —p/(M)ofB. Then w: T”M — T’M is a C= homomorphism of
vector bundles and thus can be considered as an element of A'. Hence T” =
{L — o(L); L e T"M}. Conversely, let » be a C* homomorphism of vector
bundles 7”M — T'M. Then {L — w(L); L ¢ T”M} defines a C* vector sub-
bundle T” of TM &, C which is an almost complex structure having finite
distance to M.

Another important fact which should be mentioned in this connection is the
integrability condition. An almost complex structure on M is said to be inte-
grable if it is induced by a complex structure on M. Let o ¢ A{M) give rise
to an almost complex structure M, on M. If M, is integrable, then it is easily seen
that we must have

(1.6) ow — o, 0] =0.

Newlander and Nirenberg [15] proved that the converse is also true. It should
be remarked that the proof of the converse is difficult. Kuranishi has given in
[13] a proof of the converse for the real apalytic case under a more general
formulation.

2. Normal filtration of H'(4)

Let u;, ---, u, be an ordered sequence of indeterminates; we keep these
fized in our discussion here. Then B(A4%,u,, ---,u;) denotes the space of
polynomials ¢ of the form

1
(2.2) ¢ = Z Z : ¢‘il,--—.iqui1' . 'Ll.iq B .éil,"',iq 3 AP .

g=11511<, 0+, <igsl

If $ € B(47,u,, - -+, u;), then §: A% — 47! can be extended to
B(Ap, Uy » v -y ul) - B(AP+I: Upy 0 vy ul)

by defining

- : -
(2.2) aqs = Z Z (a¢i1,-~-,iq)ui1' : 'uiq .
p=11501<, -, <igs?
The bracket operator [ ] can also be extended as follows. Let ¢ ¢ B(4?; u;,
<oy up), ¥ € B(AY; uy, - - -, uy). Then [, ] is defined to be the element ¢ in
B(A?*e; y,, - -+, u;) such that
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Hi = 0 ’
p— 1
e'ix,-",iq - T y[(ﬁiam,...,ia(,), xp‘ix"'in"'iq] )

el
1<a(l)<---<a(s)<q

(2.3)

forg>2and 1 <i < .-- <i, <, where i, means omission of i;,, - -,
Iosy

It should be remarked, however, that this definition of extension of the
bracket [ ], is dependent of the order of the indeterminates u,, - - -, u;,. We
are mainly concerned with the space B(4!; u,, - - -, uy).

Definition (2.1). Anelement ¢ ¢ B(4*; iy, - - -, u;) is said to be distinguish-
ed if and only if 6¢ — [¢, ¢] = 0.

Definition (2.2). Take a subsequence 1 < i, < ..- < i, < I. We then have
the projection opepator plu,,, - - -, u;) of B(A”; uy, -+, u;) onto B(4?; u,,
-+, u;) defined by

plug, -+, uiq](¢) = p PackpyaikyRaky *  Uatky
1Lky, 00, k3<g

where a(k) = i,. It is easy to check that if ¢ is distinguished, so is plu,,, - - -,

u 1(4).

In [9] Kuranishi defined a subset G™P(u, -, Uy,_; Uy, -+, U4;) oOf
B(A; u,, ---,u;) for 1 < h < l. From the definition this subset is independent
of uy, -+ -, u,_, preceeding u,, - - -, u,. Hence we can write G**"(u,, - -+, u;)
instead of G™¥(uy, - -, Uy_y; Uy, - - -, 4;). When there is no possibility of con-
fusion, we denote this subset by G* also. The definition is by double induc-
tion of (h, D).

G%V(u,) is defined to be the subspace of distinguished elements in B(4!; u,).
Assume G+ is defined for 1 < W' < h <! < l. Then G*!*V is defined by
induction of h:

(1) G®¥*¥ jg the space of distinguished elements in B(A'; u;, -+ -, 1y, ).

(2) Assuming that G*">'*V is defined for 1 < ¥’ < h, G**H1*Y js the set
of all elements ¢ in B(A4'; uy.,, - - -, 4;,,) satisfying the following four condi-
tions:

B Foranyhr+1<j< ---<jLl+1withh 4+ 5L,

ol us Jg) € GRSy, o suy,)

(ii) Identify B(A'; up,1s * - -, 4y,;) canonically with a subset of B(4'; u,,
-+, U,,). Then

¢ € G(h’l“)(uh’ Sty ul+1) .
(iii)) Consider u,, -+, Up_q, Upsys - - » Uy, 1nstead of uy, - - -, u;,,. Then

pe G®P Uy, v vy Uyyy) -
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(ivy Foranyi,h+1<i<l+ 1, and any & in G®Y(u,, -« -, ;- -+,
u;. ) such that

P[un«n, SRR/ PN uz+1](¢) = P[uhn, : ‘b'u,ﬁi, ey ul+1](¢) ’
there exists ¢* € G**V(u,, - - -, u;,,) such that
P[uh+l9 ttty ul+l](¢*) =¢ s P[uh, Tt aia M) ul+1](¢*) =40.

Definition (2.3). Z% = {a e A'|ay; € GHV(u)}.

The following proposition follows from Kuranishi [9].
Proposition (2.1). . (i) Z® is a vector subspace of Z“~".
(i) 04°C Z® foralll.

In view of this proposition, we can define

H(L)(A) — Z(“/ng A
Thus we get a filtration of H'(A4):
(2.4 : H(A) =HY D H® D ...,

which we call the normal filtration of H'(A4). It should be remarked that the
proof of the above proposition is quite complicated.

Let L(H™,.--,H?; 4") denote the space of multilinear mappings of
H"® x ... x H? into A'. A mapping fe L(HY, ..., H?; A") is said to be
symmetric if f can be extended to a symmetric g-ple multilinear mapping of
HY % ... x H? into A'. The space of symmetric multilinear mappings of
H®Y % ..o % H? into A' is denoted by SL(H", - - . ,H@; A"). Let R;: HY —
A' be such that R\(x) = x for all x e H", and let R, ¢ L(HY, - .., H?; 49,
2 € g < n. We then denote the sequence {R,, - - -, R,} by R.

Definition (2.4). R = {R,, ---,R,} is called an ND-sequence of length »
over H if and only if, for every (¢, ---,2;) e H® X --- X H™,

) v
Talty - t) =3 5 Ryltys -t )ty -ty

g=1 1<i1<><ig<n

is a distinguished element.

In {9, p. 2871 Kuranishi proved that there exists an ND-sequence of any
given length over H. Moreover, these R, can be taken to be symmetric in
view of Theorem 3 [9, p. 261].

For (tl’ RRRPE P tn+1) eHY X .-+ X H™ X H™ and (§29 ot 7Cn) € HV X
ce X H™Y, set .
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KR(th - ’,tn,-th; Cz: i ‘,Cn)

n
= Z Z [Rq«n(til’ B tiq, tn+1) ’

=0 101 < - <igsn

(205) Rn—q(tl, ct s ?z‘;’ .t Azq, . n)]
n=1lk-1

+ Z Z Z [Rq-ﬂ(tzp o zq, ot ‘aCk+1) s

k=1 g=0 18, <rer Kig<k
P
RL-q(t‘ts" zp"'ati¢>"‘stk]-

Also set Kx(1,,t,) = [t,,1,] for any (¢,,1,) e H® X H®. It is to be noted that
Kr(1,, 1,) does not depend on R. The following theorem of Kuranishi [9, p. 287]
gives a characterization of the filtration H‘” DH® D .

Theorem (2.1). Let R ={R,,---,R,} be a symmetrzc ND-sequence of
length n over HV, Then

H(n-H) P {x e H(n) ]S: iﬂ L(H(k), .. .’H(n) ; H(k—‘l)), k — 2’ ceeLn,
and 8% in LLH®, ..., H™ ; 4") such that
Sty » -5 tn) + K(ty, o+ 510, X5 S5ty <+ -5 8,), -+, 85(,) = 0
for all (t, ---,t,) e H® X -+« X H®} . |

3. Kuranishi space

Here, after stating some definitions concerning deformations of compact
complex manifolds, we state the fundamental existence theorem of Kuranishi.

Definition (3.1). By a family of compact complex analytic manifolds we
mean a triple (X, =, V) of reduced analytic spaces X, V' and a proper surjec-
tive holomorphic map = : X — V satisfying the following property (*): For each
point p € X we can find an open analytic subspace ¥ of X containing p, an
open analytic subspace ¥’ of V containing =(p), a domain U’ in a complex
Euclidian space C*, and a complex analytic isomorphism h: ¥ — U’ X V/
such that =(g) = p(h(q)) for all q in Y, where p is the projection to ¥’ of
U xV.

When = satisfies the above property (*), we say it is simple. Thus a family
of compact complex manifolds means a triple (X, z, V) of reduced analytic
spaces X, V and a proper, surjective, simple holomorphic map z: X — V. It
can be seen that z~%(?) for each ¢ V is a compact complex manifold.

Definition (3.2). A family of deformations of a fixed compact complex
manifold M is a family (X, r, V) with a distinguished point 0 € V, together
with an isomorphism i: M — z~%(0).

Definition (3.3). A family of deformations (X, =, V) is said to be effec-
tively parametrized at O ¢ V if the Kodaira-Spencer map p,: T,V — H'(z~*(0),
8. — 1,,) is injective, where T,V is [1] the Zariski tangent space of V at 0,
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and 4, — 1, is the sheaf of germs of holomorphic vector fields on z=*(0).

Definition (3.4). A family (X, z, V) of deformations of M is said to be a
complex analytic universal family at the reference point O if for any family
(X', 7', V*) of deformations of M with reference point 0, there are holomorphic
maps f: U — V, f: ’~%(U) — X such that f maps z’~'(¢) holomorphically iso-
morphic to z~'(f(¢)) for each ¢ ¢ U, where U is an open neighborhood of 0’ in
V’ such that f(0) = 0.

The existence of a holomorphic family of deformations of a compact com-
plex manifold M for which H%M, ) = 0 was proved by Kodaira-Nirenberg-
Spencer [5]:

Theorem (3.1) Kodaira-Nirenberg-Spencer). Let M be a compact complex
manifold. If H(M, 8) = 0, then there exists a complex analytic family (X, =,
V,0) of deformations of M such that p, maps the tangent space T,V isomor-
phically onto H'(M, 6), where X and V are complex manifolds.

Kodaira-Spencer [8] proved that the above family is universal at O.
Kuranishi obtained a theorem in [9] more general than Theorem (3.1) of
Kodaira~-Nirenberg and Spencer. This theorem is concerned with normal families
of deformations, a concept which we define below.

Definition (3.5). Let (X,z, V) be a family of compact complex manifolds
where X and V are complex manifolds. Let M, = z~'(¢) for ¢t ¢ V, and assume
for each ¢ a subset K(z) of H?(A(M,)) is given. Then the family {K(2)} is said
to be coherent at ¢, if and only if the following condition is satisfied: For each
cocycle 8 in A?(M, ) representing an element in K(z,), there is a family 8,
depending differentiably no ¢ and defined for ¢ sufficiently near ¢, such that
B:, = B and that §, is a cocycle representing an element in K(z).

Definition (3.6). Let (X, x, V) be a family of compact complex manifolds
where X and V are complex manifolds. Let M, =z"'(t), te V. -Let
HY(AM,)) D H*(A(M,)) D - - - be the normal filtration of H'(A(M,)). Then
the family (X, x, V) is said to be normal at ¢,e V if and only if the family
{H™(A(M,))} is coherent at ¢, for each r = 1,2, -- ..

Kuranishi [9] obtained the following very, interesting properties of normal
families of deformations:

Theorem (3.2). Let (X,n, V) be a family of compact complex manifolds
which is normal at t,e V. Then the image of the infinitesimal deformation of
the family at ty is in H*(M,)) = (My_ H"(AM,,).

Theorem (3.3). Let M be a compact complex manifoid. If H(M,d) = 0,
then any family (X, =, V,0) of deformations of M is normal at O e V.

The following theorem gives a generalization of Theorem (3.1):

Theorem (3.4). For any compact complex manifold M, there exists a
holomorphic family (X, =z, V,0) of deformations of M, which is normal at 0,
such that the infinitesimal deformation at 0 is a bijective mapping to H*(M) =
ooy HOAMD)).

The most important existence theorem in deformation theory is the theorem
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on the existence of a universal and effective family of deformations for a com-
pact complex manifold. Kuranishi proved this theorem in [10], and gave a
different proof in [12]. One may find the proof of this theorem with complete
details in [13].

Theorem (3.5) (Kuranishi), (Fundamental existence theorem of deformation
theory). For any compact complex manifold there exists a universal and ef-
fective family of deformations.

It becomes necessary for us to state the main ideas which Kuranishi used to
prove this theorem, as our main theorem is based on these.

Let us fix a hermitian metric on M, and let (4, ) be the L, inner product
of 4, ¥ € A?. With respect to the fixed hermitian metric, we have the formal
adjoint operator ¢ of 5, which is characterized by (34, ) = (6, dv¢). We then
define the complex Laplace-Beltrami operator [J = 66 + 43, which plays an
important role. The fact that the metric is hermitian implies that 36 is of the
same type as 6. A form 4 is said to be harmonic if 3§ = O; or equivalently
06 = 0 = 6. The fact that the operator [J is a strongly elliptic second order
operator implies that the space H? of harmonic forms in 4? is finite dimen-
sional. Also we can establish the existence of the harmonic projection operator
P and the corresponding Green’s operator G, yielding the Hodge decomposi-
tion:

(3.1 6 = P8 + 508 + Qa6 , where Q = 0G, f € A7 .
Also with respect to the Sobolov’s k-norm, we have for any 6 € A?
(3.2) P8 < clblx Q0. < )6 -

where ¢ is a constant.

Using these tools and the implicit mapping theorem in Banach spaces,
Kuranishi proved that there exist an open neighborhood W of the origin in B}
and a complex analytic injective mapping @: W — A' such that {@(2),t € T},
where T is the analytic set in W defined by

(3.3) T={se W|PD(),ds)]} =0,

represents a complex analytic universal and effective family of deformations
of M. T is called the Kuranishi space.

The mapping @ is of vital importance to us, and is called the canonical uni-
versal map. Our main theorem gives a characterization of the normal filtration
of H'(M,6) in terms of @. We give below some important properties of this
map 9.

By construction, @ satisfies the following identity:

(3.4) () — 10[0@1), ()] = ¢ foralltin W .
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Let U be an open subset of M with complex analytic chart Z = (Z', - . -, Z%).
Then locally

(3.5) &) = 3 OZ, 1)dZ=-3/6Z*

@,3

where @2(Z,1) is C~ in Z and ¢. Also the local expression for [@(2), @(2)] is
given by

(3.6) (060,00 = 3 @ . (Z,0dZ= A\ dZ=.3[3Z°
a1,a3,8
where @2 . (Z,t) is C~ in Z and ¢, and is skewsymmetric in «, and «,.

Lemma (3.1). For any integer | > 1, we have
66(t) — 3HOW, 6] = 04,00 — % 2: Q5. PlO), 2(D)] ,

where the operator Q~E z'.z defined by Q~577 = —QI»,§] and 5 ¢ A?, and Q% is the
k-fold composition of Q,.
Proof. By (3.4) we have for all tin W

0d(2) — 30Q[P(1), P =0 .
Use of the Hodge decomposition (3.1) gives

o@(t) — Ho®), ()] = —1Q0[D(D), D(D] — LPLO®), D(D)]
—Qlod(2), (0] — PIP(D), (]

(by (1.1) and (1.2))
= 04,,69(t) — PO, D(D)] .

Now writing
600 = O, (O3 + §5,69(8) — LPIO(2), B(D)]
and observing that [[@(), D(D], D(¢)] = 0, we have

30(t) — HOW®, (D] = §5,,0() — %:; 05, PLO(D), D(0)] .

On iteration we get the required result.

PART II. CHARACTERIZATION OF THE NORMAL
FILTRATION OF H'M, 6)
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1. Statement of the main theorem

Throughout this part M will denote a compact complex manifold, and & the
sheaf of germs of holomorphic vector fields. In §2 of Part I we have defined
the normal filtration of H'(M, 8):

HI(M, 0) — H(l) 2 H(Z) ; cee

In § 3 of Part I we have defined the canonical universal map @: W — A', where
W is an open neighborhood of the origin in H*(M, §). Our main theorem gives
a characterization of the normal filtration of H'(M, 6) in terms of .

We know that H'(M, §) is a finite dimensional vector space. Let m be the
dimension of H'(M,§), and (S', ---,S™) a linear chart of H'(M,§). Fort =
@, --,t™) e H(M, 6) we defipe a differential operator D, = 1'§/68" + - .- +
t™5/3S™. It is well known that D, is defined independently of the choice of the
chart ($%, ---,5™).

Define a new filtration of HY (M, 6):

HM,0) =HYDOH"D ...

and a sequence of maps @2 HY— 4! n=1,2, ... by induction of n as
follows:
Define H™ = H'(M,§) and ¢V = @, and assume that HI, ... HI,
O, @O, ..., 9 are defined. We are going to construct H»*1 and ¢V,
Definition (1.1). A linear subspace L of H!™! is called an allowable sub-
space when there is a2 polynomial map

(1.1 : p: H® — HW
of the form
(1.2) p@) =t + 0@ + -0 + 0,

where p(t) is a homogeneous map of degree r with values in HJ satisfying the
following condition:

(1.3) PD [@-? o, -0 o#] =0

sln+a

forall (¢, - -+, tp, ) e H X .-« X H"™ x L.

Then we prove

Propositin (1.1), If L, and L, are allowable subspaces of H"), then L, + L,
is also -an allowable subspace of H™,

By the Proposition there is therefore the unique maximal allowable subspace
of H'™) which we define to be H"*%). Let p*~! be a map as in (1.1) correspond-
ing to H**1, and set @~V = @»~? o y»~1. Then our main theorem is the fol-
lowing:
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Main Theoxrem. The two filtrations
HM,0) =HY2DH® D ..., HM,0) = HIYDH D ...
coincide. |

2. Statements of a lemma and a proposition

To prove our main theorem we need a lemma and a proposition, which are
stated in this section and are proved in § 4.

Lemma (2.1). Let H™, @%~? be defined for s < n as in § 1. Assume that
H< = H for all s < n. Let

gr%: Y, HO (r=3,---,n
be a polynomial map of the form
2.0 D) =1 + 6772 + - - + 675,00,

where 8{°(t) is a homogeneous map of degree | with values in H®. Assume
that '

2.2) PD, . 02T =0

forall (ty, -+, t,) e HY X -+ X H?, (r =1, ---,n), where
2.3) Tr=2 = Poflo...of 2, TO =D = ¢ .
Then the sequence

2.4) D), ..., D, ., Tn?

is an ND-sequence of length n over H".

Proposition (2.1). Let H™), @ be defined for s < nasin § 1. Assume
that HI = H for all s< n. Let ¢ 2. H'—-W (r=3,---,n) be a map
satisfying (2.1) and (2.2). Assume that the sequence (2.4) is an ND-sequence
of lengthr. Thenforr=1, .--,nand (t;, --+,t,.) e HY X - .- X H™ X H™,
we have

Dt Q‘(T-D’ W(T—l)] =~ ZKR(tl’ M) tr+! 5 01(-1)(t2’ tt 0y tr+1) ’

e BT ) (mod B7).

1,000, 0r ¢ 1[

2.3)

Here B' is the subspace of A® generated by all elements of the form
D,, .. [F@ >, ¥ ?] where (s, ---,5) e HY X «-+ X H?®, g <r.
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3. Construction of the filtration H*(M,8) = HP D HY D ..
and proof of the main theorem

By definition H' = H*(M, §) and @ = @.

Construction of H™ and proof of H*? = H®. By our construction, H® is
the maximal subspace of H such that for all (¢,,2,) e H? X H™, PD, 19, D]
= 0 and @ = @. According to Kuranishi’s coanstruction,

(3.1) H? = {t, e HY|P[t;,,] = 0}  forall 1, e HY .

Since D, ,[9, @] = 2[t,,1,], it is clear that PD, ,[9,0] =0 if and only if
P[t,,1,] = 0. Hence we have proved that H'” = H*. In other words, we have
Proposition (3.1). te H* = H® if and only if Plt,u]l =0 for every
ue HY, ‘
Construction of ), We have H''=H", H"l = H?® and §‘"" = @ = .
We are going to construct H™) and @. Let ¥V C H™ be an allowable sub-
space. This means, according to Definition (1.1), that there exists a map:

(3'2) ‘u: H(l) —_— H(l)
of the form
(3.3) @ =1t + () .

where g’(¢) is a homogeneous map of degree 2 with values in H?, such that
(3'4) PDZx,lz,ls[@°#7@°,u] = O .

Now by Lemma (2.1), {D,,0,D,, , 9} is an ND-sequence R = {R,,R,} of
length 2 over H'. Thus according to Proposition (2.1), for all (¢, 1,,¢,) € H?
X H® x V. we have

(3.5 Dy [@op, ®opl = 2Kalty by, ty; pP(tyt))  (mod BY) .

By observing the definition of B? and applying the previous case (namely, the
case n = 2), we find that P(B?) = 0. Hencz

(3.6) PD, , [@op,®opl =0 = PKp(t,t,t; 1"(t,2)) =0 .

Expanding Kz(,, t,, 1, ; V(.. t;)) by means of (2.5) of Part I, we see that
V is an allowable subspace of H® if and only if there exists a symmetric
bilinear map p’: H® X V — H® such that

3.7y —P T [R\(1),R,(1,, 1)) = Plt,, p55"(2,, 85)] forall (1,,) e H® X V .

By denoting the left hand side of (3.7) by 4(z,,,¢), we have a symmetric
trilinear map
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4: HY X H® x V- H M, 0 .

Thus we have proved that V is an allowable subspace of H® if and only if
there exists a symmetric bilinear map #{": H® X V — H" such that

3.8) Aty ty, 1) = Plty, 10 (25, )] for all (t,,2,) e H® X V .

We want to prove now the following proposition.

Proposition (3.2). If V,, V, are allowable subspaces of H®, then V, + V,
is also an allowable subspace of H®.

This proposition follows immediately from the following Lemma.

Lemma (3.1). V is an allowable subspace of H® if and only if F(H® X V)
C 2, where

3.9 V:H® X H® — L(H®,H M, 6))

is a symmetric bilinear map defined by V(t,, t.)(t,) = d(t,, t,, t;) for all (2,,t) €
H® x H® and all t,e H", and 8 is a linear subspace of L(HV, H*(M, )
defined by

0= {Ae L(H®, H(M, @) |there is h in H"

(3.10) such that A(f) = Plt, h]} .

Proof of Lemma (3.1). Let V be an allowable subspace of H®. Then by
the definitions of ' and {2, we get

(3.11) FH® x VYC 2.

Conversely, let V < H® satify the above condition. We have to prove that
there exists p": H® X V — H® such that (3.8) is satisfied. We now define a
map ¢: HY — 2 by - ‘

(3.12) a(h)(h) = Plh, h] for all 2, Ay e HY .

Since this is a surjective linear mapping, there exists a linear mapping 4: 2 —
H® such that ¢o # = identity. Extend j to L(HY ; H*(M, §)), and denote the
extension by g. By assumption, for all (z,,2,) e H® X V we have F(t,,,) € 2.
Hence we can define a map g”: H® X V — H® by

3.13) Pty ty) = polV(t,ts) .

As V is symmetric, p{V is also symmetric, and by its construction we easily see
that it satisfies (3.8). This completes the roof of Lemma (3.1).

Proposition (3.2) is an immediate consequence of Lemma (3.1). From
Proposition (3.2) it follows that there is the unique maximal allowable sub-
space of H®, which is defined to be H. Let ¢! be a map as in (3.2) corre-
sponding to HP. Then define @% = @ o g,
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Proof of H'''= H®. Let t,e H®. Then there exists a map g’: H® X
HY! — H® such that

PKR(tn 1 Ly pé“(tz, ta)) =0 ) (tl, tz) e HY X H® |

Define Si: H® — H™ by Si(t,) = 4V(t,, t,). Then Theorem (2.1) of Part I is
satisfied, and hence t, € H®.

By retracing the steps the converse is easily seen. Thus H™ = H®, and
hence we have proved

Proposition (3.3). ¢ H® = H® if and only if there exists a map
g HY — HY of the form p'(t) = t + p"(t) such that PD,, ,, ,[@ o u', Do p']
= Q, for all (t,,t,) e HY X H®,

General case. We assume that A™, ... H?J; ¢V, ... @*-? are con-
structed, and also that H") = H® for 1 < r < n. We are going to construct
H"*1 gpd ¢»-V and prove Hin+1l = Fin+b,

Remark. The construction of H™! does not clearly indicate how the con-
struction should go in the general case. The construction becomes quite com-
plicated even in the case of H'"l. Once we construct H*), we see the general
pattern of construction for H**1, Hence it should be remarked that we get
the motivation for the various steps of construction of H{**" from the corres-
ponding steps for the construction of A,

Let V C H™ be an allowable subspace of H™. This means that there exists
a map

(3.14) pi H® — H®

of the form

(3.15) p@) =t + g0 + -+ 4RO
such that for (7, <+ -, 15, 2,,) e HY X -+« X HP X V
(3.16) PD,,...... [0" P oy, @ Popl =0.

Since all the assumptions of Lemma (2.1) are satisfied, D, 9" and
D,,...... @™ % form a symmetric ND-sequence R = {R,, - --,R,} of length n
over H. Thus by Proposition (2.1) for all (¢,, ---,¢,,) e H® X H® X --.
X H(n) X V’

[@=-2 ol A °#] = ZKR(tv ce s lng; #g)(tz’ M) tu+1)9

(3‘17) Dt:,---,tuﬂ
MY Pén_l)(tn’ tn+1)) s mOd (Bz, MR Bn) .
By induction assumptions we have P(B”) = 0 for all r, 2 < r < n, so that

PD. .. “ P2, , -2, =0
(3.18) tayeem il 2 ¢
= PKR(tl’ Tt tn+1; ,u(nl)(tz: RS tu+1): ct (n_l)(tm tn+1)) =0.
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By expanding K and using (2.5) of Part I, we see that V' is an allowable
subspace of H™ if and only if there exist symmetric multilinear maps

(3'19) ‘u;’k klz-z H*® % ... XH™ % V — H&-D , k = 2, e,

such that

n=1

_P Z Z [Rq+1(ti1’ M) tiq’ tn+1)> Rn-q(ti’ AR tiqa Tty tn)]

p=0 11 <> <iggn
(3.20) noixcd
=P Z Z Z [Rq+1(t1.1’ MR tiq7 .u;klk+1(tk+1a tr tn+l)) H

k=1 g=01g{1<-+-<iggk
Rk-q(tu DY tIq, MY tk)] 5

where / 1, means the omission of ¢;, - - -, ¢, . :
Denoting the expression on the left hand side of (3.20) by A(ty, -+ -y t.0)s
we see that

(3.2D » 4: HY X .. x H™ x V — H(M, 0)

is a symmetric (n + 1)-linear map. Thus V' < H™ is an allowable subspace if
and only if there exist symmetric multilinear maps

(322) pll i H® X oo X HY X VS HEY, k=2,-,n,

such that
A( )=P Y % [Re.
7 = Loy v maty,
(3.23) ' * kz=:1 qz=:olsn<§<iqsk o ¢

#;klkwl(tk-i-n M) tn+1)), Rk—q(tp M ,?Iq, D) tk)] ’

where #; means the omission of ,,, - - -, #,,.

Proposition (3.3). If V,, V, are two allowable subspaces of H™, then
V., + V, is also an allowable subspace of H™.

This proposition follows from the following Lemma 3.3.

Lemma (3.3). V is an allowable subspace of H™ if and only if
F(H® x V) C 2 where

F: H®» x H® — LH® X ... X H™V, HA(M, §))
is defined by
(3-24) : V(tn’ tn+l)(tl! s ’:tn-l) = A(tv tt tn+l)

for all (tp,t,,) e H® X H™ and (t,,-++,t,_) e H® X +-- X H"V, and
R CLEHY X --- X H*Y HYM,)) is defined by
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0= {Z!hkeSL(HHH-i) X oo X HV H®) k=1,.-0,n—2

and h,_, e H®™Y such that 2(t,, -+, tn,,)

n=2 k-1

(3.25) =PYL Y X IRy tip Bltesss 5 2as)) s

k=1 g=01<i; < <igSk

R n~2
R(tn D) th’ ) zk)) -+ P Z Z [R(tz'p Tt tiq’ hn—l) s

¢=01<4:<-++<3qLn~1

R(tl’ M) flq’ ] tu—l)]} .

Proof of Lemma (3.3). Let V be an allowable subspace of H». Then from
the definitions of I7, £ and (3.23) it follows that F(H* X V) C Q. Conversely,
assume that V satisfies this condition. Then we prove that V' is allowable by
proving that there exist symmetric multilinear maps p{-. of the form (3.22),
which satisfy (3.23).

By the definition of 2 we obtain a surjective linear map

G H(’L—I) @ SL(H(n—l)’ H(n-Z)) @ SL(H(?L-—!) X H(n—z)’H(n—3)

(3.26)
®.-.-DSLH"Y X ... X H®, HY) - 2 .

Thus there exists a map

p: Q — H(ﬂ-l) @ SL(H(‘n-l)’ H(u—Z))

3.27)
@D ... ®SLEH®D X ... X H®, HO)

such that ¢o 2 = identity. Extend & to (H® X --- X H®™, H*(M, §)) and
denote the extension by p. By assumption, F(¢,,t,,,) € 2 for all (¢,,2,,,)) €
H™ X V. Hence poV(t,,t,,,) is well defined. Let

(3.28) Ho V(t,,,, tn+1) = ((# ° V(tm tn+1))1a MY (# o V(t.,,, tn+l))n_1) )
where (uoV(2,,t,.), € H*™V, and

(poV(tas tns1))r € SLAHTY X oo X HO™70, HT)
forr=2,---,n—1.
Then we define
yé"_“(tm tn+1) = (# oV(t,l, tn+1))1 s

(329) yi"'””(tn-nz, MY tn+l) = (/—1 °V(tm tn+1))(r-1>(tn—r+29 Tty tn-—l)
forr=3,---,n.

From the construction of these maps p% .., it follows that they satisfy (3.23)
but may not be symmetric. We should note that u{2 ., (fz,1s - - *» r4,) 1S SYM-
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metric in the last two variables #,, ¢,,, since ¥ is so, and it is also symmetric
in the first n — k — 1 variables since (zoF(¢,,t,.,)); is so. Hence, if only we
can interchange ¢, and ¢, where k + 1 <s<n-—landn<r<n + 1, then
2® ... will be symmetric as seen from the foliowing lemma.

Lemma (3.4). Let E', F?, .- ., E*, F be vector spaces, and f e L(E*, + - -,
E"; F) be such that

f(xv sy Xy o0 s Xy ""xn) =f(x1, cresXey vt s Xy "',xn)

for1 <r<s<nandx, x,c E. Then there exists a symmetric multilinear
map

F: E' X -« X E'(n factors) — F

such that }(th . ',t-n) = f(tla o ',-n) fOT (11, . ”tn) e B X e X E*.

We give a proof of this lemma in §4. Hence to complete the proof of the
lemma we have to prove the following proposition. :

Proposition (3.4). There exists a solution {py# . ,k=1,...,n~ 1} of
(3.23) such that p$. ., are all symmetric.

Proof of Proposition (3.4). (3.23) can be written in the following form:

n—-1
(3-30) A(zb t Ty tn+1) = k§1 Mlc(tl, ey, tk, ‘uﬁ,"lk“(tk“, sy, t‘n+l)) N

where
M,:HY X -.. x H*® x H® — H*M, 6)_

is defined by

k-1
Mk(tv P 7 tllc) =P Z Z Sk[Rq.n(tl, Tty ti;, t;;) ’

Erican e,
Ryolty - o Bups o vsfin oo t0)] .
For a fixed o ¢ H®, we define
Mg: HY X ... x H® — H* (M, 6)
by
My, - 1) = My, -+ 1y, )

Then it is clear that Mg e SL(H®, - .., H*; HY(M,#)). We now claim that we
can find *p$®, ., € SL(H**Y, ..., H™ ¥V ; H*) such that they satisfy (3.30).

Take a basis e, - - -, e, of H(M, §) such that e, ;,,,, - - -, €, is a basis of
HY and e, n.1y215 - *» € 1S @ basis of ¥V for asequence a(1) < - - - <a(n + 1).
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Extend p{® .., to muitilinear mappings of H* X --- X H' (n — k + 1 factors)
into H®, Then there exists *p® .., e SLEHY X +-+« X HY; H®), (n — k + 1
factors of H"), such that

(3'31) *,u;,k-)k-{-l(e;l’ ) eln—k-i-x) = #;‘?—k-;-l(ell’ M ’ej,z_k+1)

forany 1 <e, < ---<le,, _,,, < m. We prove that the restriction of *u®, ,,
to H**Y x ... x H*V gsatisfy (3.30). Let t;,e H?, i=1, ..., n, and
t,.eV.Lett;, = 33, che,. Then

Aty oy tny) = R Zz - - -Cf."_;*fd(eh, e ”eznu)
1.4 4n+1

(3.32)
I o 'Cfn"fll)d(em’ T emx+1) ?

1$p;<-~-<ﬂn+1sm(2h'",in+1
where (4;, - -+, A5,1) is 2 permutation of (g, - - -, tn,1)-

There exists a- permutation 7 of (g, ™« -, ,.)) such that 2; = x(g,) and
4; > a(i). This implies g; > a(i) for all i. Thus from (3.30) we have

r=1
A(eﬂz’ T e.P‘n-)-l) = ];Z—l Mk(ePl’ T € f“;klk-)-l(epx-n’ e ’eﬂn-)-l))
(3.33) -

n-1
= kE_] Mk(em’ T €y *ﬂiklnl(en“, Tt e,,,,.},,)) .

Now if (4;,---,2;) is a permutation of (g, ---, ), then (Ag,ys =+ 5 2p.1)
must also be a permutation of (g1, - - 5 o i1)-
Since *u{®,,, and M *u ., are symmetric, we have

-1
(3~34) A(e,,,, Tty e,;(,,.},l)) = I:Z—I Mk(eh? HRREY ¥ *#;k-)-k-{-l(elk-}.;’ el,,+1)) .

I 2, - - -, &) is not a permutation of (g, - - -, ¢;), then by induction assump-
tion both M, (e,,, - - -, €, *u ey, n e, ) and My(e,,, - - -, e, *u®,  (e,...,

-+, e,...)) vanish. Thus (3.34) holds in all cases. This shows that *x®, .,
satisfy (3.30), and therefore Proposition (3.4) is proved.

By Proposition (3.3), there exists a unique maximal allowable subspace of
H™, which is defined to be HI**'). Let 4"~ be a map as in (3.14) correspond-
ing to A»*11, and define ¢~ = @®~? o y»~1, This completes the construction
of H»*1 and @™~ o

Proof of H**1 = H"*V_ Lett,,, € H»+3, Then for-every (¢, ---,1.) €
HY % ... x H™ we have o

PKR(ID SREPY PP ﬂg)(tz, .. '7t-n+1)’ .. -,pé""‘”(ln,lnﬂ)) =0.

Define
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Si,.ﬂ:H(k)X,“XH(m,__,HUc-n’ k=2,---,n,
by
Sty -5 tn) = #;k—-}:lz(tk’ R 21“.1) s k=2,-.-,n

Then by Theorem 2.1 of Part I we see that ¢,., e H**V. Conversely, if
t,,. € H™*Y using Theorem 2.1 of Part I we can construct symmetric maps
3., satisfying (3.23) proving that ¢,,,, ¢ H**1, Hence we have proved the
following proposition.

Proposition (3.5). te H**Y = H®*VY if and only if there exists a map
g HY — H® of the form (3.15) such that (3.16) holds for all

(- t))e HY X ~«- X H™ |

This completes the proof of our main theorem.

Remark. (1) Since A'(M,@) is of finite dimension, the normal filtra-
tion of H'(M,§) must terminate. Hence there exists a positive integer J, such
that

HO D H? D ... Hlo — Jd — ...

(2) The maps g '(t) = t + pf* @) + -- PO 0
can be so chosen that x& . ,(¢) is in the orthogonal complement of H‘“” in
H®, Hence for any ! > /;, £~ can be so chosen that g7 (2) = 0 for all
r=0,1,.-.-, I -, — 2.

4. Proofs of Lemma (2.1) and Proposition (2.1)

The proof of our main theorem depends very much on Lemma (2.1) and
Proposition (2.1). We prove these as well as Lemma (3.4) in this section. The
proof of Lemma (3.4) is quite elementary; however for the sake of complete-
ness we give it here

Proof of Lemma (3.4). Let {e,---,e,} be a basis of E' such that
{e;,- - -, e,} isabasis of E*. Define f such thatf (e,,,- - -, e,) =fle, ), - +» €., 1)
if there exists a permutation = of (1, - - -, n) such that (e,_,, - --,e,.,,) € E' X

-+ X E™. fis defined to be zero otherwise. The proof is complete once we
show that § is well defined. Let =, z* be two permutations of {1, - -, n} such
that both (e,m), ceeseg)and (e, 56, ,) € EY X -+ X E™. Consider
fleyys = * *s 80 (ﬂ)) We can assume that z’(n) = n(n) by hypothe51s Let 7/'(s)
=n(s) for s =r,.-.,n. Then using the hypothesis it is easily seen that
7a(r — 1) = n(r — 1). Thus

f(ep:(l)’ Tt ev:(ﬂ)) = f(ey.,:(l): MR ev:'(n)) >

and § is well defined.
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We now introduce some notations. Let @: H® — W be the canonical uni-
versal map. Then @ can be written as

o) =1t + @.(1) + ¢3(t) + -

where @,() is homogeneous of degree r. Let yg: HY — H" be any polynomial
map. Then we can write

) =t + @) + -+ + @@,

where p,(f) is homogeneous of degree r. Let (S, ---,S™) be a chart of H®,
and let t = (¢}, - - -, 11") € H®. Consider the differential operator D, = 1i3/35"
4.0 4 1'9/35™. We denote (D, 2)(0) by u(t,), and similarly for¢,, --,¢,in
HY, p(t, ---,t,) denotes (D,, ..., x)(0). Also we recall that if {f is any
homogeneous map of degree ! of H, then there exists a unique symmetric
IHlinear map F such that F(z, - -+, 1) = I!f(f). Also it is easy to check that
F(t, -+, t) = Dy, ... ..,NO). By a decomposition J of (z,, - - -, #,) into k sub-
sets we mean a collection (J,, - - -, J;) of k subsets of (¢, - - -, 1;) such that they
are disjoint and their union is (¢, - - -, ¢,). We consider two such decomposi-
tions J, J' to be the same if and only if, as sets, J, = J, forr = 1, - -, k, where

= (J}, - -+, J;). Define an equivalence relation in the set of all decomposi-
tions of (¢, - - -, 1,) into k subsets as follows. We say J, I’ are equivalent if and
only if there exists a permutation z of (1, - - -, k) such that, as sets, J, = J,,,
for r =1, .--,k. Denote by I an equivalence class of this type. |J,| denotes
the number j, of elements in J,, and J! denotes j,!..-j,!. Then we have the
following resulit.

Lemma (4.1).

(4.1) D,,....(@op) = ; A/IND, 9 = }; D, .

Proof. We can assume that @ is homogeneous of degree 4. Then there
exists a unique symmetric A-linear map @ such that @) = (1/A)&(, - - -, 0).
Thus @op{t) = (1/h ')(f)(,u(z), -+, u(2)). Similarly let 2, denote the symmetric
r-linear map corresponding to y,. Let (@ o u(2)), denote the homogeneous part
of degree [ of @o x(r). Then

4.2) @op@r = T A/RD(us, @), - -, 5, 0)

Jatessrin=l

Consider

4.3) Ny, -5 0) = 41‘_‘_. A/RDSETD, -+ -, @J)) -

Since this is a symmetric /-linear map, there exists a unique symmetric map of
degree [ such that N{z, - - -, 1) = I!f(z). We claim that () = (@ o u(t)),. For,
we have
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N, -« 0) = T T RDD (s (D), - -+, p25,(D)

4.9) = = B )P0, @)

fire+ia=t AV \ZU T i=5r

= Do),
and therefore

u(@"#) N(tls D] tl) = Z; (1/]')D#(.7_)@ *

Now we are in a position to prove Lemma (2.1) and Proposition (2.1).

Proof of Lemma (2.1). The proof is by induction on the length of the
ND-sequence. Using the fact that P[z,,2,] = 0 for all (z,,4) e H® X H®, it is
quite easy to check that D, @, D, , @ form an ND-sequence of length 2 over
H®. Now assume that H'1, @~® are defined for s < r and that H* = H® for
s < r. We further assume that there exist polynomial maps §*, 7% of the
form (2.1) such that

(4.5) PD,, ... T2, "] =0,

for all (¢, ---,t)eHAY X -+- X H®, s =2,...,r, and that D, T¢"?, ...,
D,, .. . Z“"® form an ND-sequence of length s fors =2, ---,r — 1.

We prove now that D, ¥“~?,...,D, .., "% form an ND-sequence of
length r. Observing the definitions (2.1) and (2.4) of Part I, we note that it is
sufficient to prove that
(4.6) oD e w(r -2 %Dh iq[q]‘(r—Z)’?p'(r-Z)]

‘21

foralll <i < .- <i, £r. By Lemma (3.1) of Part I, we have

;
¢D

' [Zp‘(’r-Z) , w’(’r-Z)]

bigyeenyt ?F“' 2y __ %D“v"'- .
@7 "
1 Z Quk;(r—m%‘P[w(""Z),w'(r—Z)] .
1 k=0

— gzr_l))(olﬁ'(r 2)) + D

‘11 “itig Ligaeny
Noting that Q;’(,}’)(,)(a?"‘z’(t)) = 0(¢+7*"), we find that the first term on the
right hand side of (4.7) vanishes. Also the induction hypothesis implies that
the second term vanishes. Hence we have the required result.

Remark. Lemma (3.4) implies that the ND-sequence D, ¥, ...,
D, ... 7% is symmetric.

Now we prove Proposition (2.1).

Proof of Proposition (2.1). Once again the proof is by induction. The
Proposition is trivial for » = 1, because D,, ,[D, O] = 2[1,, t,] = 2K (2, t.).
Let (¢,¢,8) e HY x H® x H® Then we have
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3
“4.8) Dy, JTO, T =25 [D,D0,D, 1, D67 .
i=1
Now applying Lemma (4.1), the right hand side of (4.8) becomes

3 ~
2 Z] [Dziq)> Dti, ?i,u@ =+ 6%(’1, tia te)]

= ZKR(IU t, ts; aé(tz, ta)) + Dz,,ai(u,z,)[ww), W(O)] + Dts,e;(z,,zz)[gp(()): @‘(0)]
= ZKR(tU zz> ts; ;(tz, ts)) > mOd BZ .

Thus the proposition is proved for r = 2.
As we proceed further, the computations become quite complicated. For
example for (¢, ---,2) e HY X H® X H® x H"™, we have

(TP, TP) = 2Kp(ty; - -« 5 13 05(ty, 15, 1), 631, 1))

W P
+ lsiéi < Dtt,,n,,ﬂg(h,;t,,?tz,tn)[w- T
1
(n D% (34

+ 2 Diyosienia ol @, T

25154

(¢ (€]
+3: 2 Dogm,,z.-,),0;01,?;,.?:,,:4)[;” AN

1415954

Dth"

-t

4.9)

The exact expression for D, ..., . [&"~0, F“-V] turns out to be very compli-
cated, but we do not need it.

Assume that (2.3) is proved for all r = 1,2, ---,n — 1. Then

“lrta

(4.10) IR Aty Ay
: =2 % Dy JTDys,

1881 <eoe<ig=En +1

W(n—l)] R

sveylnta

where { 7, means omission of #;,---,t;,. Now we apply Lemma (4.1) to
expand D,, ..., ¥* and D, ... 5 ..., 7 *7". Observing the definition of
Koty o oytnyr; 02ty <= s tnar)s -+ 657~ V(t,, t,,,)) and applying the induc-
tion hypothesis, we have ‘

: [y‘(n—l)’ W(n—l)]
*abn+1
= ZKR(IJ’ st lngrs 95.1)(12, ) tn+1)’ M z(n_n(tm tn-a-l))

(n=2) (n~2)
+ Z Dﬁén_n(til,Mg),th"',?:p"-,?im'",tnﬂ[gp & I,

D,,..

1g1<i2gsn+1
Ui1,i2) *(n,n+1)
mod B!,
= ZKR(IU M} tn+1; 01(:1)(t29 AR tn+1)9 MR én_l)(tna tn+1))
mod B* .

This completes the proof of Proposition (2.1).
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